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ABSTRACT

A derivation is presented of the basic equations of the Quasi-
Wundy Code; this code is widely used for computer calculations
relating to explosive systems. The paper begins with the basic
notions and attempts to clear up the confusion concerning
Lagrangian and Eulerian equations which is aU too common in
the literature. A brief derivation of the fundamental equations
of continunm mechanics follows and these equations are then differ-
enced to give the equations of the code in the form actually
employed in the code. The computational procedure is then discussed
and two questions which often exise with respect to the working of
the code are answered. It is hoped that this paper will provide
a background for answering other questions as-they arise.
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FOREWORD

' he wide use of the Quasi Wundy Code for various calculations
rela i . to explosive systems has shown the need for an adequate
summary of the basic equations and computational schemes of the
code together with the derivations behind them. To the best of
the author's knowledge, such information has not been documented
and is not readily available from any source, although it is
necessary in order to answer some of the questions which arise
with respect to use of the code. Answers to two such questions
have been included in the body of the report and it is lhoped,
that sufficient insight into the code is generated to prepare
the reader to answer any other questions which may arise.

This paper should serve, further, both to introduce the
reader to the code as well as to make known its full possibilities
so that individual investigators can adapt it to their own special
problems. In accordance with this goal, the paper proceeds from
basic notions of fluid mechanics to the Fortran statements of
the code. Some material of a rather basic nature has been
included, but it is felt that this is worthwhile since it leaves
the paper more nearly self contained thus ensuring uniformity of
notation and circumventing the difficulty of obtaining good
reference material.
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I. BASIC NOTIONS AND COORDINATE SYSTEMS

The Quasi Wundy Code is a one dimensional computer code
designed to calculate various quantities of interest in an
explosive system. It is assumed that all materials involved
obey certain basic equations of fluid mechanics which express
the basic conservation laws: energy, momentum and mass.

In order to obtain these equations, it is necessary to make
a few preliminary remarks. The first concerns the description
of the system which is reacting. There are two possible ways of
specifying physical quantities such as pressure and density.
The first is simply to set up a coordinate system and locate e
point (x.y, z) in that coordinate system. Then the pressure
(for example) is defined as some function of the coordinates of
the point, (x,y,z) and the time. This is the Eulerian approach.

A second alternative is to identify each particle of fluid,
not by its present location relative to a set of fixed coordinates,
but by the location at time t = 0. This identifies each particle
of the fluid in terms of its original location. This is the
Lagrangian approach.

In both cases, a set of fixed axes are chosen and the
motion is described relative to these fixed axes. The differ-
ence lies in the choice of independent variables. Euler
chooses the location in space and time and seeks to determine
pressure, density, etc. at that point. Lagrange chooses the
initial coordinates of the "particle" of fluid and seeks to
determine its present location, the pressure, density and so on.
It is to be emphasized that, mathematically, the difference
between these two approaches is a difference in viewpoint.

The solution to the Lagrange equations include x = f(a,b,ct)
as the x coordinate of the present position of the particle.
This is the Euler coordinate, x. Conversely, the solutions to
the Eulerian equations will include a function which will
describe the past and future locations of the particle now at
the point (x,y,z). Constants of integration will occur which
depend upon the position of the particle at t = 0. These
coordinates are the Lagrange coordinates.

The Lagrange approach is better suited than the Euler for
describing the motion of mixtures of fluids with different
densities and equations of state, since it is only necessary to
assign these properties to the initial state of the fluid; during

1



the subsequent motion it is qute easy to determine which fluid
is described by some calculated value of pressure for example, 4
since the fluid is still labelled with its original coordinates
in the Lagrangian scheme.

This point is worth developing in detail since the
equations of the code are developed in Lagrangian form while
the ordinary approach to fluid mechanics is by the Euler
equations. Accordingly we give an example to illustrate this
point.

y

(a,b+Ab) (a+na, b+ b)

(a, b) (a + a, b)
x

Y

y(a, b)

I I

x~a, b)''I C )
x~ a b) -4 x(a + Aa, b + b)

FIGURE 1
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In Figure I, x and y are the Eulerian coordinates and a and

b are the Lagrangian coordinates. In the Lagrangian scheme,
the particle is characterized by the coordinates a, b and
retains these labels for its entire motion. Its location at
any time is given by x = f(a,b,t) and y = g(a,b,t). Any
physical quantity such as density is determined as a function
of a, b, and t: p = p(a,b,t). This is the present density of
the particle which was originally at the point (a,b). If
Euler's equations are solved, the solution will include a
density equation p = p'(x,y,t). This is the density of the
fluid now at the point (xy). If (x,y) is the present location
of the particle originally at (a,b), we can substitute x = f(a,b,t),
y = g(a,b,t) to get

p = p' (f(a,b,t), g(a,bt) , t)

The function so obtained is the same as the function obtained
from the Lagrange approach.

This point is developed in some detail because of a
certain amount of confusion in the literature concerning

Lagrangian coordinates. Many statements are given which,
though literally accurate, convey a misleading impression.
One example is the statement that the Lagrangian reference
frame is not inertial. This statement is literally true,
since the particles do not change their initial coordinates
with time, regardless of the pressures acting. In that sense
the coordinate system is not only fixed in the fluid but also
distorting as well as moving, with the fluid and hence the
Lagrangian mesh of Figure lb is not inertial. But the reader
is cautioned against the 6rror of thinking that the frame of
reference for the motion is moving. The frame of reference is
the coordinate system with respect to which x and y are measured.
These are the Eulerian coordinates and refer to a coordinate
system fixed in space, (the fixed axes in Figure lb).

While the scheme of using the initial coordinates for
Lagrangian variables is the simplest and most straightforward
approach, it is clear that any function of the initial variables
will do equally well. One such function that is used in the
scale is the one a'e will describe next.

3



Consider the equation

X(Mt)

M = /(f,t)dg

X( o,t)

where p is the fluid density and x, the coordinate of a point
in the fluid, is defined as a function of M by the integral.
If we take a partial derivative with respect to M on both
sides we obtan:

1 = p(x(Mt),t) x

We consider analogous definitions for the cases of a sphere
or an infinitely long cylinder - each of which is a one dimen-
sional problem.

For the cylinder,

0

and

1 = 2v p(R(M,t),t) R(M,t)

For the sphere, we have

R(M,t)

M = 4f p(Q,t) 2 d
0

1 = 4jr p(R(Mt),t) [R(Mt)] 2 6R

where R is the appropriate Eulerian radius.

4



We now introduce a quantity designated by A which represents

a surface area. For slab symmetry, we choose an area of unit
height and unit width (Ay = 1, Az = 1) and obtain A(Mt) = 1.

For a cylinder, we choose unit height Az and angle 21c to
obtain a surface area: A = 21 R(M,t) and for a sphere we
choose a solid angle of 4v to obtain:

A = 4iKR(M,t)] 2

The diagrams are as follows:

Slab:

y

Cylinder:

A Az = 1

Sphere:

It follows from the law of conservation of mass that the
mass contained inside a volume bounded by the same fluid particles
is constant in time and depends, therefore, only on the original
volume and the coordinates of that volume. Hence the quantity
M may be chosen as a Lagrangian coordinate, and the Eulerian
coordinate R (or x, in the plane case) is related to it by the
differential equation

5



3R 1
= p(Mt) A(M,t)

where A(MNt) = 1 for a slab, A(Mb) = 2: R(14,t) for a cylinder
and 4A R2 for a sphere.

With this much noted, we turn our attention to the equations
to be solved.

II. EQUATIONS OF THE WUNDY CODE*

We begin our discussion of the Wundy equations with some
remarks toncerning time derivatives. In order to facilitate
our discussion we set x, = x x2 = y and x3 = z and write x, as
a general term to represent x1 , x2 or x3 . Similarly, we use

a1 to represent ai, a2, or a3 (ie: a, b or c).

Now consider a particle located at the point (x,, x2, x3 ).

In the Lagrangian formulation xj is a dependent variable and
depends on a1 as well as t. But the a1 , which are initial
coordinates (or functions thereof), do not depend on time.

Hence we write x = and xj is the velocity of the fluid

particle at the time t. Similarly, the acceleration is:

2 xi

In the Eulerian formulation, the xi are the independent
spatial coordinates but depend on the time. The velocity and
acceleration are now given by

CIX:Ld 2X,and =
dt dt2

*The reader already familiar with fluid mechanics may easily

skip this section.

C 
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t

the difference between the two forms being the same as the
difference between partial and total derivatives in ordinary
calculus.

As a further illustration, consider the rate at which the
density of a given fluid particle changes with time. In the
Lagrangian formulation this is simply 3p /dt. In the Eulerian
formulation this is 1 .

dp dTs p~
dp = p + t3 ax,

* t I*= 6x d

or, upon replacing dxj/dt by the Eulerian velocities:

dt = t -x1

or in vector form: d
dt +V

The quantities whose time derivatives we will be seeking
are usually integrals and it will be necessary to determine
the time derivative of the Jacobian determinant before we can
handle them. We suppose the Eulerian coordinates to be related
to the Lagrangian coordinates by a set of equations:
Xi =x i (a,, a2 ., a., t) and the Jacobian determinant of these
equations is:

where T~j - • (6xi/ aj) and

IT~j1 represents the determinant formed from the elements, Tij.

1Note that the x,y,z co-ordinates of a particle are themselves

functions of time hence the total derivative.

7
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To find the derivative of J, we write:

dJ E J dT rsdt = s- M-rs dt
I' Sr =1I

The partial derivative of the Jacobian with respect to
the element Trs is a rather complex operation and will be set
forth in Appendix A for the reader familiar with tensor
analysis.

We note the result:

T_ = fTrs J

Trsj

where the symbol in braces denotes the rs term of the inverse
of the matrix formed from the elements Trs. This inverse is

simply the matrix a_8 • Hence for our time derivative we have:
3Xr

dJ=ZS as dT

tas d 6xr
r,s=l xr  dt a.,

as dxr
= za  J

r,s=l 6xr 3a, dt

= J--J
r,s~1 ~x, a, r

r=1r= xr

J . u

Si



With this derivative out of the way, we may turn our
attention to the evaluation of time derivatives of integrals.
To this end, let 0 represent any physical quantity characteriz-
ing a set of fluid particles. We wish to integrate 0 over
all such particles:

I= fff 0 (x,t) dv
C

C, being the region comprised of such particles. As the
fluid moves, the equation of the boundary changes in time as
does 0 itself. But the Eulerian coordinates of the boundary
are functions of the Lagrangian coordinates, ai, and we can
express the integral as an integral over the initial volume of
fluid.

=fffo (x(a),t) JdVCO

where Co is the boundary at time zero and J is the Jacobian
of the transformation from the aj to the xi. coordinates.*

Quite obviously, J depends on time, but the bounding

surface no longer does since it is evaluated at t = 0.

dt dt JU-7 _ .f'ff J d v
Co

*The reader unfamiliar with Jacobians is referred to Taylor:

Advanced Calculus, pages 428-431.
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Now since the limits of integration are constants, we can differ-
entiate under the integral sign (assuming 0 an1d J are sufficiently
smooth) to obtain

dIfff j+ . dV

CO

=fff #td.

C

+ V. Q ~ u) dv

(upon inverting the transformation).

This provides us with all the background material for the
conservation laws.

Conservation of mass:

d Jj
dt JJJ Pdv= 0

JJ V+~u dvO0

10
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and, since this is true for any arbitrary volume, the integrand
must be zero.

P+ p V -u =0

,-..Conservation of momentum:

f p Uk dv = Fk

~c

where Fk is the k component of the force acting, and the sum
is over all forces.1ssr( )

.+ Puk V •u dv ZFk

S tUk dv Z Fk =

or employing the mass conservation equations:

P . dv = k

aaC
The forces acting divide into two kinds. The first kind is

made up of volume forces such as weight and electromagnetic forces
and the second kind is made up of forces acting on the volume at
the surface. The hydrodynamic approximation consists in neglecting C

all forces except those arising from pressure.

Since the pressures are on the order of megdoars, there is
no problem whatever in dropping all electromagnetic forces and
weight forces. In neglecting all viscous forces and rigidity
forces in the metals, the prog:ram is perhaps open to criticism,

11



but, nonetheless, the approximation is not as bad as may be
anticipated (Reference 1). With this approximation, we write:

fff avff

C Surface

where nk is the k component of the normal vector. The assumption
of the hydrodynamic approximation has the effect of reducing the
stress tensor of continum mechanics to a diagonal tensor with the
elements of the main diagonal all equal to - p, (ie: Tjj = - p 8 ij
in tensor for.m).

Applying the divergence theorem to the integral at hand,
we have:

ffp~&dv fff~9 dv

or

f (pk+.. ) dv =0Lr t xkj

and finally, since this is true of any volume, we write:

P I k+ =p
8t bxk

which is the form of the momentum equation we wish.

The energy equation is also easily derived. We let U be
the internal energy per unit mass and let h be a vector
representing the heat current out of the sua'face. (The heat
current is defined as that vector which makes the integral

frC h.A^ ds
Surf

12
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equal to the heat that is transported out of the volume through
the surface.) Further, suppose that heat is being gererated
inside the surface at a rate X per unit mass. Then applying
the first Law of Thermodynamics, the rate at which the energy
in the volume changes is equal to the work done on the body by
the pressure forces plus the heat generated inside the body
(X, as defined above) minus the heat lost through the surface
(heat current, mentioned earlier). In equation form, this
statement reads:

d, fffP (u+u2)dv =ff p (n. u)dA - h.fids

C S S

+ ff pX dv

C

The derivative on the left we evaluate as before:

fff U+ IU2) + P (1+uiQ + V. U (U +I U2]1 dv

f ff [P 2[ 2C

fff 0+ (U +u) dv
C

where the mass conservation law has been applied.

Now we have:

fff p ( + uu)dv : f V. (pu) dv f V.h dv
Vol C C

p dv

13



ff E (j - + V. pu + 7- hj dv 0

fff [P - + u. p4+ VPJ + PV U + V. dJ

* ffj' (0 + PVnU + V.h] dvO0

where the momentum conservation law has been employed. Since
the integral vanishes for every volume, it follows that:

p (0 -) + p V .u + V .h = 0

For the Wundy code, the heat conducted away is assumed
negligible and h 0 0. The source of heat is assumed to be
viscosity and is incorporated into the pressure term by the
introduction of an artificial viscosity term, q (Reference 2).
This term is the very core of the solution. By manipulating it
properly, we arrive at a continuous solution for the variables.
The shock discontinuity which appears is smoothed out over a
few zones and it becomes possible to find difference equations
whose solutions will approximate the revised problem. We will
discuss q at a later point in the paper but, for the present, we
merely note that - p X = q V. u. Solving for U, we obtain
p 0 = - (p+q) V. u. Using the mass conservation equation, we
can eliminate V u to get:

U(p+q) 6t

If we introduce the specific volume V' = 1/p, we obtain:

=- (p+q) VL

14



Summarizing, our equations read:

mass:

+ p Vu=0

momentum:

uk_ I~

6t 6x k

energy:

The first of these equations is open to objection, since
there is little point in obtaining differential equations in
the density. An alternative approach is to introduce the mass
Variable introduced at the end of the first sectio.,. Recall
that

x(Mt)

M f p( ,t) A (g) d

o, i)

and

6x 1

7MpA

With this variable, the conservation of mass is automatic since
each particle is permanently identified by the mass contained
between the initial particle and the particle in question.

The other conservation laws, take the form:

Momentum: p u = x pAor 6 A-

6t 6x M - t 6

Energy: U= (p+q)6Vi (as before)6t 6

15



To obtain the equations of the code, we must multiply this last
equation by po and set poU = E and p0V' = V. Since po, the
initial density, is constant we have:

E V

and the momentum equation is unaltered:

u =-AM

To these two equations of motion we add the supplementary
equations:

V = Po/p

u=u= r/ t

slab
Definitions: Area = 2 sliner

4 R ) cylnderj

4 2sphere

R- Ro Ri  slab

VoumI= r (R 2 - R 2 )  cylinder

Volume = r 0 3)r

tRo- Ri) sphere

(The subscripts i and o refer to inner and outer boundaries
respectively of the region of interest).

Equation of State: p = F(E,V)

The equation of state is a thermodynamic equation relating
(in our case) the pressure, internal energy and reduced density.
We will discuss various equations of state somewhat later in
this report.

16



III. DIFFERENCED FORM OF THE EQUATIONS

The basic notion behind the use of high speed computers to
solve differential equations is the replacement of the derivatives
involved by difference quotients which approximate the derivative.
Thus to solve the equation:

&Y = x y(xo) = yO
dx

we assign A x a value and compute A y from the equation:
A y/A x = x o . The variable y is the increased from yo to yo + A y
and x is increased to xo + A x. The process is then repeated and
a column of corresponding x and y values are produced.

Similar observations apply to partial differential equations,
except that there are more variables. To this end we number the
space variable, in this case the mass, by the number J. The time

is represented by the number n. Thus O is represented by:

N+1 N

J - )/At

and

/1 by: J J+l . 1 / Mj+1 .M )
JJ

To facilitate the writing, we employ O(J,N) to represent ON

hereafter.

The camputation proceeds by calculating all the quantities
desired at the time n for each mass cell. The spatial computations
are performed first at a fixed time, then the time is advanced
and the process repeated.

Fractional indices are introduced in order to "center"
the difference scheme. In this fashion, a higher accuracy can
be achieved with the same number of zones. The quantity 0 (J + 1/2)
is a value of $ intermediate between $(J) and O(J+l). To illustrate
their use, let us take a differenced form of the equations derived
in part 2. We write these equations down and comment on them
later.

17



Conservation of Energy:

3-E.-- p,,v

• E(J - 1/2, N3 + 13 = E(J - 1/2, 1q) - ;'!p (J - 1/2, N) + P (J - 1/2, N + 1)

+ ~ 1/2, N + 1/23} [ V (J - 1/2, N + 1)

- 7 (J -1/2, N)
Momenttum:

- A 6P/6M

DUDT =- A(J,N) (p+)(J+1/2,N) - (p4cq)(J-1/2,N)
M(J+1/2) - M(J-1/2)

where DUDT is the computer name for the acceleration. This
expression is equivalent to:

DLD = A(J, ) (p-1+q)(J-1/2,'l) - (p+q)(J+1/2,N)
1/2 [M(J4+1/2) + M(J-1/2)]

Defining Relations:

V = p0o/P

v(J - 1/2, Ni + ) =p Vol(J - 1/2, N 1) / m(J -1/2)

t

x(J, I z. 1) = x(J, NI) + u(J, 11 + 1/2) A Tmi



DUDT = t

u(J, N + 1) u(J, N) + DUDT A Tmin

1 1
.Area =  21X A(J, N + l) 2vX(J N + 1)

4a2 4iX2 (J, N + 1)

(Ro- Ri)

Vol= 7c(Ro 2 - Ri2 )

41/3(Ro3 - R1
3 )

x(J, N + 1) - x(J - 1, N + 1)
Vol(J -1/2, N +1) = g[ X2 (J, N +1)- X2 (J -1, N +1)]

41/3 [X3 (J, N + I) - X3 (J - 1, N + 1)]

These are the basic equations of Wundy as set forth in
section 2. The superscript n refers to the time and the subscript
j to the distance. The subscript j - ! identifies a variable as

2
in the space bounded by the two lines Rj and Rj_ l .

The quantity m(J - 1/2) is the mass contained in the zone
betweenX(J) andX(J - 1). It is obtained from the previous
mass variable M by the relation m(J - 1/2) = M(J) - M(J - 1).
The expression M(J + 1/2) - M(J - 1/2) should be taken to mean
the difference between two masses. The first mass is that
contained between the left hand boundary of the initial particle
and the surface corresponding to X(J + 1/2). The second is the
mass between the same initial boundary and the surface
corresponding to X(J - 1/2). This is best understood by reference
to the following diagram:

19



m(J - 1/2) m(J . 1/2)

I -.

x(J -1) x(J- 1/2) x&) x(j 1/2) X(J +1)

V

[M(J + 1/2) - M(J - 1/2)]

Since M(J + 1/2) - M(J - 1/2) is the sum of the masses lying
between X(J - 1/2) and X(J) on the one hand and between X(J)
and X( T - 1/2) on the other. If X(J - 1/2) and X(J + 1/2)
divide the regions X(J - 1) - X(J), X(J) - X(J +'l), into
two halves with equal masses, then the mass between X(J - 1/2)
and X(J) will be half the mass of the entire region X(J - 1)
- X(J), that is 1/2 m(J - 1/2). Similarly the other mass
involved is 1/2 m(j + 1/2), so that M(J -;. 1/2) - M(J - 1/2)

- ! (m(J + 1/2) + m(J - 1/2)).

With this in mind, it is obvious that the two expressions
for DUDT in the difference equations are equivalent.

At this point, the question arises whether the differential
equations could be represented by another set of difference
equations. The answer to this question is yes. Froim (Refer-
ence 8) considers several schemes of differencing and evaluates
them. Unfortunately, Fromm's criterion for evaluation is
basically a stability criterion. He considers the best equation
to be the one that allows the largest A t to be us~d before

instability sets in. While this may be a good mathematical
criterion, the obvious physical criterion of agreement between
calculated and observed values has not yet been fully employed.

20



As an example of the alternatives available, the following

extract from Fromm's work is given:

1) X(J - 1/2, N + 1) = X(J - 1/2, N) + u(J - 1/2, N) A t

2) x(J- 1/2, N + 1) = X(J - 1/2, N)

+ 1 [u(J -1/2, N + 1) + u(J - 1/2, N)] At

3) X(J- 1/2, N + 1) = x(J -1/2, N) + u(J - 1/2, N + 1) At

Of these equations, Frcmm's work indicates that the last is
preferable. On physical grounds, however, it seems that some
sort of average velocity would yield the best results in the
computation of the final position, since this would represent
the velocity of the zone at some intermediate time. There is

also a tendency to choose the initial value of velocity partly
because we ordinarily extrapolate from present knowledge (u(N)
and X(N)) to future knowledge X(N + 1). Physically Fromm's
choice of the best equation runs counter to the normal choice.

By considering a Taylor expansion of X as a function of
time, we will gain some insight into the difference equations.
Accordingly, we write:* (using superscripts and subscripts
throughout for clarity.

N+1 N+/S N+1/2 1/2
+At 2  62X

" "+ / 2 t -"+ /  t (.7x"+/

Upon subtracting these, we obtain:

XJ -/2 At +O(t) and the ost

N.1/ N+.1/2 N+1/2N+/

accurate representation for fixed At ought to be:

UNote that fundamental tie increment At is the timenfr:m cycle

N to cycle N+l. Since we have used cycle N+l/2, the time

difference between the 2 cycles is At/2.
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Xxj/ + 'Llt

j_112 t Tl12

N N+!/2

- j.1/2 + t'uJ.1/2

But, as Fromm points out, the error introduced by neglecting
terms of higher order may actually be lower in the case where
u4+1 because the neglected terms tend to cancel each other oiit
in one case and not in the other.

Similar differencing schemes may be tried on all the
equations, but the scheme used in Wundy is the only one that
need concern us here.

Since the difference equations are not the same as the
differential equations they represent, but only an approximation
to the differential equations, the solutions to the difference
equations are not the same as the true solutions but only an
approximation. It is reasonable to suppose that the solutions
to the difference equations can be made as close as we please
to the true solutions by choosing At sufficiently small and
making m(J + 1/2) sufficiently small. But non-linear differ-
ential equations are rather ornery oojects and have a way of
confounding predictions of this kind. In our case, however, the
two solutions can be made arbitrarily close providing only that
(1) At and m(J + 1/2) are chosen sufficiently small and: (2)
that the system of difference equations is stable, the theorem
(stating that stability of a system of difference equations is
necessary and sufficient for convergence of the solution of
these equations to the true solution) being due to Peter Lax
(References 3 and 6).

The stability of a system of difference equations refers
to the amplification of errors introduced into the canputing
process by various means - round-off errors, inaccurate data
and so on. If such errors are amplified and grow in time as the
computation proceeds, the difference equations are said to be
unstable. If not the equations are stable. Striking examples
of numerical instability are given by Richtmeyer (Reference 3)
and the following example is taken from the source.
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The continuous lines represent the solution to a differ-
ential equation and the dashed lines the solution to the
difference equations. It is obvious that the two solutions
are not approaching one another as t increases.

Instability is avoided by insuring that a certain relation
holds between the increments to the distance and time variables.
Courant, Friedrichs and Levy deduced the first stability cri-
terion and Von Neumann and Richtmeyer have applied this criterion

to the Wundy code. The criterion is autanatically satisfied
by the DELTAT subroutine which cmputes At - the change in
time fram 1 cycle to the next. It is important to note that
no stable set of difference equations exists to describe the
problem with a shock discontinuity present. This is why the
artificial viscosity was introduced.

The functional form of the artificial viscosity is rather
arbitrary but the following conditions axe imposed:

(1) When the artificial viscosity term is incorporated
into the problem, the equations must have continuous solutions.

(2) The distance over which the shock is spread must be
everywhere on the order of the thickness of the zones used in
the numerical ccmputation, independently of the shock strength
(so that the same q will work for all shocks) and independently
of the condition of the material into which the shock is moving
(so that q is determined solely by the variables which influence
the pressure, density, velocity and the other physical quantities
involved).

(3) Outside the shock front, the effect of q must be
negligible. This is to be taken to mean that the difference
between the quantities computed with the use of q and the
quantities computed by more exotic schemes will be negligible,
which implies that q itself is small.
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(4) The Hugoniot equations must hold when all other
dimensions are large compared to the shock thickness.

von Neumann and Richtmeyer discovered that, for 1
dimensional flow in a substance which obeyed the y law
expression:

(CL6x) 2  u u
q = I-x

satisfied all these conditions. A later correction was made

setting q = 0 for u 0. For if U/x is non-negative then

the front of the zone is moving more rapidly than the rear
and the zone is expanding. In this case, no shock is formed
or likely to form and consequently the undisturbed equations
have a continuous solution and there is no need of the smoothing
effect of q. The form of q used in Wundy is:

(CX)2 if --

But V' V/p. so that

V

q(J- 1/2,N + 1/0)

= PO ( 2 u(J, N + 1/2) - u(J - 1, N + 1/2)]2
v(J - 1/2, N + 1/2)

= C2 PO (I) [u(J, N + 1/2) - u(J - 1, N + 1/2)]2

1
! [V(J - 1/2, N + 1) + V(J - 1/2, N)

Using the code symbol CQSQX4, we set von Neumann's 02 - CQSQX4/4
to obtain:
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q(J- 1/2, N + 1/2)

SCQSQ4 Po (I)[u(J, N + 1/2) - u(J - 1, N + 1/2)]2

4 1 rv(J - 1/2, N + 1) + VJ - 1/2, N)]2

- CS 4 O (1 U(, N + 1/2 . _ -_ - N,= + U2/12
2 - [V'J - 1/2, N + 1) + V J -1/2, ,)j

and CQSQX4 (I) is set equal to 9 for explosives and 16 for metals
in the present code.

IV. EQUATIONS OF STATE

The equations of state are normally determined empirically.
For explosive gases, the equation used is the ideal gas equation:

pV = RT; E - Eo = CvT

where E is the internal energy per mole and p,V,T R and Cy all
have their usual significance and refer to 1 mole of gas.
(Refer to Zemansky: Hen. and Thermodynamics, page 120) Recall
Cp- Cv= R and Cp/ = . and we have:

A Ao Cp -c V

- pV

Dividing both .,ides ty tor- azomic -w-ht in grams, on the left
we obtain the _ al energy per gram t-instead of per mole)
and on the right, we hive the volume of one mole divided by
the mass of one mole wnich is the reciprocal of the density.

U -U 1 p/P
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Multiply by po - the initial density and the result is:

E - EC = P0O (U - U) - p (o/P)
7-1

or

E - Eo  pV
7-1

where V = PO/p as defined earlier.

This equation represents the energy of an ideal gas forI =1.4. For values, of y in the neighborhood of 3*, the equation
also represents not only a condensed explosive but also, to a
good approximation the high pressure gases released by the
detonation process (Reference 7). The energy that is released
into the wave is controlled by the burn fraction, F, which is
defined as the following ratio:

F 1-V

where V = Po/P and Vc0 = Po/pc 3 the subscript CJ referring
to the Chapman-Jouget conditions (Reference 4). If the
Chapman-Jouget hypothesis is satisfied, then:

_ 7 ) Vc
7+1

1-VC =i --- 1 i
7+i 7+1

and

F- 1 - = (Y+1)(l-v)
1 - V0j

which is in the form used in the code. The fraction of the energy
released is then F.

*This value of 7 need no longer represent the ratio of specific
heats in the explosive
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In the actual working of the code, the burn fraction is
subjected to several tests designed to insure that the computed
situation is physically realistic. If F < .00001, it is assumed
that the difference between F and 0 is due to errors in the
calculation. If F > 1, it is assumed that the difference in
F and 1 is due to the same cause. F is then set equal to 1.
If F begins to decrease in time, F is set equal to 1. Finally
if F is equal to 1 in every zone, the energy of the explosive
is spent and the routine is skipped on the next cycle.

The equation of state and the energy equation are both
used in advancing the energy. From the above considerations, we
have:

6p/3E = (y 1)/V

or in differenced form:

DFDE = (y - 1)/V (J -1/2, N + 1)

The energy equation of section II is now employed

Et= - (p + q) 6V/6t

to obtain:

E(J- 1/2, N + 1/2) - E(J - 1/2, N)

=- (p + q)(J - 1/2, N) [V(J - 1/2, N + 1)

- V(J - 1/2, N)]

But, inside the explosive, this equation is subject to error
because energy source terms are not included. Moreover the
pressure p(J - 1/2, N) is decidedly not the pressure acting
over the entire time cycle or even a good approximation to
it since the pressure can be expected to increase greatly
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when the energy of the detonation is released. For these reasons,
an iteration process is used in computing E(J - 1/2, N + 1).
First we set

EI = E(J - 1/2, N) -(p + q)(J -1/2, N + 1) ( ( 1/2, N + 1)
- V(j - 1/2, N))

PI= DPDE * E• F(J - 1/2, N + 1)

These intermediate pressures and energies are then employed
in obtaining the resultant pressure and energies as follows:

E(J - 1/2, N + 1) = E(J -1/2, N) - I PI - P(J - 1/2, N)]

[V(J - 1/2, N + 1) - V(J - 1/2, N)]

P(J - 1/2, N + 1) = DPDE E(J - 1/2, N + 1) - F(J - 1/2, N + 1)

The computation, having advanced E and P, returns to the
main program.

Of all the inert materials a genuine equation of state
is available only for aluminum as of this writing. For other
materials, the Hugoniot equation is used. This equation is
strictly an equation of process and not of state, the process
involved being a shock transition. The Hugoniot is accurate,
therefore, only for shock transitions, but very weak shocks are
nearly isentropic and, if the drop in pressure from zone to zone
is not too great in the relief wave, the Hugoniot will be a good
approximation to the adiabat which is the actual curve along which
the relief transitions take place.

The Hugoniot (Reference 5) may be obtained from a
straightforward empirical curve fitting process or by utilizing
the empirical observation that the shock velocity is a linear
function of the particle velocity at sufficiently high pressures.
The Rankine-Hugoniot equations can then be used to determine
the equation of the Hugoniot curve in P - p coordinates (where
p is the quantity (p/p - 1)). A typical calculation of this
kind is'presented in Appendix B.
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The pressure and internal energy are now advanced in a
manner similar to that employed for explosives. The intermediate
Variables, p(p) (in the 6ode language POFMJ) and V (or DMJ) are
introduced and the empirical relation between them:

POFMU =(C1 + C2 DMU) DMU

El = E(J - 1/2, N) - [P(J - 1/2, N) + q(J - 1/2, N)]

[v(J- 1/2, N + 1) - V(J- 1/2, N)]

E(J - 1/2, N + 1) - El - 1 [POFMU + C2EI - P(J - 1/2, N)]
2

V FV(J - 1/2, N + 1) - V(J - 1/2, N)]

P(J - 112, N + l) =POFM + C2 E(J - /2,N + l)

If the computed pressure turns out to be less than -3 kilobars,
it is set equal to -3 kilobars. Since a tension (negative
pressure) of 3 kilobars will cause many metals to fracture,
a greater tension cannot appear in the physical explosion.
This introduces the negative pressure cutoff.

V. THlE PROGRAM

The computation begins by reading off the initial values
of the variables from a set of IBM cards. The input variables
are:

(1) Equation of state for region J.

(2) Initial density of region J.

(3) The constant CQSQX4 for region J.

(4) The constand Y for region J.
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(5) Certain control variables, notably:

(1) MUJRI

(2) INV

(3) NAILTQ

(4) NSWEEP

(5) K

This list of control variables is by no means exhaustive.
These are given as a sample. The control MURIN defines the

initial conditions at the innermost boundary. If the geometry
is cylindrical or spherical, MERIN = 1. For rectangular (slab)
geometry, there are two possibilities, either a rigid wall at
the origin (set MURIN = 1) or a free surface MURIN = 0. INV
is a control that determines the initial state of the material.
If the material is in its normal state, INV = 0. If it is
desired to have the material in a compressed state when the
program starts, INV is set equal to any number other than
zero, (for example INV = 1). Then the ratio of the density
in the compressed state to the uncompressed density is read in.

NALTQ is set equal to zero if the von Neumann form of
the artificial viscosity q, is desired. If NALTQ 0, then
a linear q will be used. This form of q has been used in
certain underwater explosion problems at Naval Ordnance
Laboratory, White Oak. NSWEEP is a control which introduces
a limited calculation procedure. NSWEEP = 0 causes the
velocities of three adjacent zones to be tested. If the sum
of the absolute values of these three zones is less than 10"',

and the time cycle is less than 2, then it is assumed that
the shock has not yet reached those zones and the computation
is stopped at the last of these zones.

The last control mentioned, K, determines the geometry
of the problem. K = 1 for rectangular, 2 for cylindrical,
and 3 for spherical problems.

When all the input values have been read in, all the
variables of the calculation (N, J, J + 1/2, etc.) are set
equal to their initial values and the patch subroutine
(PCH), is called. This subroutine is employed to begin the
process. The command PCH(IJ) = TMEV alters the value of the
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variable in the location IJ to a new value designated by the code
word TYME. It has been found most convenient to change the velocity
of the first interface to a suitably high value in order to begin
the detonation process. With the first zone being compressed, the
burn fraction rises and energy is released. This builds up the
pressure and the detonation process is underway. Next, the
subroutine, GENSUB, is called.

This subroutine sets a series of control variables which
locate the various interfaces and any voids that may be present.
The program is now ready to go. The limited computation test
is applied to determine an upper limit for the calculations.
MURIN is then tested to determine the fate of the first zone.

For a rigid wall condition, u(J, N + 1/2) = u(J, N -.1/2)
= TYME. For a free surface, DUDT is computed and u and x are
advanced. The computation now proceeds to advance each zone
in accordance with the difference equations cited in section
III. The velocity, coordinate, area, reduced density and
artificial viscosity are all computed for each zone. At the
void closures, the special routines discussed in section VI
are employed. When these computations have all been performed,
the equation of state is selected and the pressure and internal
energy are both advanced. The subroutine DELTAT is called up
and a new value of A is generated. This value is calculated
from stability considerations.

The time is now advanced from t to t + At and the energy
is checked to insure that the total energy does not depart
from the initial value of the energy by more than 10%. If it
does, the computation is stopped and E WRONG is printed out.
(This energy check is optional and is controlled by NCHEKE
which is set equal to 1 if this check is desired, ad 0 if
the check is to be bypassed.) The computer now compares
t At with the time limit set by the operator. If the run
time is larger than t + At, the computation is started all
over again using this advanced value of t. If not, the
output is summoned and the results of the computation are
printed out.

VI. THE VOID SUBROUTINE

The calculations outlined thus far proceed very well in
normal situations, but occasionally an extraordinary situation
arises and special attention is required. The commonest of
these situations occurs when a void is enclosed between two
regions.
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A new interface must be introduced (XV0D) and appropriate
corrections must be made in the equations. The interface on the
right ere the material begins again is subscripted JVOID and
the two collide after a time. The geometry is as follUows:

Region VOID Region I + I
I

Origin xVOID x(JVOD,N)

The interface XVOID is advanced as follows:

VD DOT (Pq)(JV-l) VD AREA

.m(J - 1/2)

UVOID (I, N + 1/2) = UVOID (I, N - 1/2) + AT VDDU

XVOID (I, N + 1) = XVOID (I, N) + AT UVOD (I, N + 1/2)

The first of these equations corresponds to the ordinary
differenced form of:

3t

except that, for the void, the pressure in zone J - 1/2 is
labelled p(JV - 1) and the pressure in zone J + 1/2 is set
equal to zero (since there is no pressure in a void).
Similarly the expression for mass is altered since the zone
mass of the void is zero. Thus, only m(J - 1/2) appears.

The right hand boundary is advanced in a similar manner:

vnx j - (Tpi) JVoD 1 AREA (JvoD, N)

2 m(jV)
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u(JV, N + 1/2) = u(JV, N-1/2) a VJDDT

x(JV, N + 1) = X(JV N)+a u(JV, N + 1/2)

The two X's are now compared to investigate whether the material
on the left has overtaken the materiol on the right or not. If
XVOID is still smaller than X(JVOID), then the void is still
open and the computation proceeds by advancing X(JV - 1, N + 1),
computing a new value of q and returning to the main program.
(X(JV - 1, N + 1) is advanced here in order to compute q.
It is recomputed later, but it was though best to keep all
the void calculations together.)

If XVOID -a X(JV, N + 1), a void closure has occurred and
the program proceeds to compute a new time increment and
employs this in subsequent calculations. XVOID is now set
equal to zero and the void index JVOID is set equal to -JVOID
which serves as a test for void closure. Hereinafter, the
subroutine is skipped.

UVOID is advanced from the VDDUDT computation and U(JV, N + 1/2)
is also advanced. After X(JV, N + 1/2), the common interface, is
advanced, a quantity called UTEMP is introduced. This is the
common velocity of the two zones adjacent to the interface
X(JV, N + 1) as cmputed from the usual formula for inelastic
collision:

1 1
7 m(JV) U(JV, N + 1/2) + 7 m(JV 1) UVOIDim(JV) + 17 - 1)

X(JV - 1, N + 1) is now advanced just as before and areas,
volumes and reduced densities are computed and the computation
is returned to the main program.

In the main program, itself, a further correction is made
to adjust the energies of these two zones. The mechanical
(kinetic) energy lost by the first zone is:

im(JV - 1) (VOID2 - UTEMP2)

and that gained by the second zone is:

!m(JV) (UFEMP u (JY, N +1/2)2)
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The mechanical energy lost is the difference

4q m(jV 1) ( ID2 - UMT 2 ) + m(j) (U(jV, N + 1/2)2 - Jp2)}

This will appear as thermodynamic energy and a plausible assumption
for metals is to assume that this energy is divided equally

4 between the two zones concerned. If we neglect the slight change
in density of the metals, we have:

m(JV) (E' - Eep 2 = Total change in internal energy of

zone JV. energy x mass / density)

Vol

- E2 = (p 2/m(') l/l(J - 1) [UVOI 2 -

+ m(JV) [u(JV, N + 1/2)2 - UM 2

1 {lp 2 [u(VN+1/2)2 MP2] p mCJV-l) ]

And similarly

E- E m -P3 !)m(JV - 1) [UVOD 2 - UTEp 2 ]• m(jV-l) 8
+ m(Jv) [u(Jv, N + 1/2)2 - U4p2

_{1- 1 -- Iv (U(jv, N + 1/2)2. mUTM )}j

For a gas closing on a metal, the low thermal conductivity of
the gas is presumed to prevent any appreciable transfer of energy
to the metal so that we may neglect LE2 and employ the second
equation given above together with the approximation UVOID >>UTEP
and UVOID >> U(JV, N + 1/2). Neglecting both these factors and
doubling the energy on the right in order to insure that all the
mechanical energy lost is converted into thermal energy of the
as, we obtain:
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El=E P [m(JV -l) UVOID2 ]
4 m(JV-l)

El+5 (/2 lg) UVOID2

-which is the equation used in Wundy.

When these adjustments have been made, JVOID is set equal
to zero and the adjusument is skipped thereafter.

VII. QUESTIONS ON QUASI-WUNDY

There are several questions that arise in the course of
working on the Quasi-Wundy code and these will be considered
hare.

The first of these questions concerns the necessity for
mass matching at interfaces between adjacent zones. This
question ordinarily arises when a very light metal is placed
in contact with a very heavy one and the number of zones
required in order to obtain a good notion of the processes
occurring in the light metal makes the number of zones in the
heavy metal prohibitively expensive if the masses of adjacent
zones are matched. As an example, consider a thin aluminum
slice - 2.5x10"3 cm thick - in contact with a copper plate.
The density of aluminum is 2.785 gm/cm 3 and that of copper
is 8.93 gm/cm3 . It is estimated that not less than 10 zones
are needed in the aluminum in order to get a reliable view of
the motions of the shock waves through the aluminum. The
thickness of each zone of aluminum is 2.510- 4 cm. Let us
consider a unit cross section and the mass of' each zone is
2.k -10 4 x 1 x 2.785 = 6.9625 x lO - 4 gm. The copper plate
is .635 cm thick and if we require that the mass per zone be
6.9625 x l0- 4 gms, we have, for the number of zones:

N Total mass of Copper = 1 x .635 x 8.93 X l04

mass of zone 6.9625

N 8,000

The cost of computation for 8,000 zones is rather high. Thus the
question naturally arises: Is it necessary to insure that the
masses of the zones are equal or nearly so?
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Consider the Taylor expansion of the pressure near a point,

to, at which the increment Am is changed. (Normally mo will be

the interface between two regions). According to ,. well known
formula:

p(m) = p(mo) + Z 6mo - (+L 2 (VP) A-  --L i ( )M +
2 m 2! 2 2mo 31 3 " 0

where m =m o  1/2 m

Designate (mo + 62 m) by P j+ p(mo - 1A._m) byP .3 and
2 2 2 2t

(ioo) pj. Then we have:

+i 1 _ )- (..3 +R7+I pi + ( MP-+ (-7) +
2 2: ~ m 2 ' 3 " m3o  2

Am (ti)2 Am

P 1 Pj () 3 L+L (- ~ L (3)2p ) 3
2in 2 2. om23  2 3 2m3n 2

Subtracting the first expression from the second:

-- + -- p ,6 l ) ( L )

2 2 22 j\

1 (3p ( + . ...........
48 mS 2

Divide both sides by Am) and we have:

Pj~2+P ~ 2. &2 M)
P a I + P j 4 (,I, p ( & .f

2 2 (P ) (~
+ A2m)

1 (Am +t m)= ( J 4 m'j

2

2 (p [(Am)2 . (Am) (nem) + (nsm) 2 ]+...
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If Alm A1n, Am - A2 m 1- 0 and our equation reads:

m3pJ. --"=) j o (L )
22

The approximation used in the code is then simply to drop terms
of order greater than the second and set

"' - 2r

2 (A1m+ t'm)

and employ this in the equation

-A

which advances the velocity and then the X coordinate and hence
the density and indirectly the pressure in the next zone.

If the masses are not matched, this equation can be
seriously in error.

In an actual run (Quasi-Wundy 84), an attempt was made to
match the masses of the zones in the aluminum foil mentioned
above and the copper plate. In order to limit computing time an
artificial interface was introduced between coarse zoned copper
and fine zoned copper. The result showed an attenuation of 150
kilobars in a 400 kilobar shock going from the coarse zoned
copper to the fine zoned. In order to explain this spurious
effect, consider the neglected terms of equation 1.

Z 1 1 ( .in, F )Am) + .n=2 2 n-l n! n J APm + A m
2

The largest of these terms (assuming the series to converge
sufficiently rapidly) io the first:

U ~ ~ 1 (2 p (A) + (A1,M3 ]
2 2! (m 2)i Aim + f am

E 1 1 p (Aim - A m)
4 (m 2  2
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Note carefully that when Alm and Am are equal, this expression
vanishes and the error is reduced fo third order rather than
second. It is anticipated that the third order terms are very
small. We investigate the lead term. In order to do this, we
need an estimate on the derivatives. This is extremely
difficult to obtain, but since ( p/dm) is continuous in the
smoothed out shock front (Richtmeyer p203), we will attempt to
estimate 3p/'m and 32p/6m2 from the data available although any
estimates of higher derivatives probably can not be obtained by
the method we will employ. The pressure is initially zero and
rises to .4 megabars in the space of four zones - 2 to the left
of the interface and 2 to the right. The mass increment to
the left of the interface is Alm = .0016 and to the right isS.0001 m).

S.4 -0 .4
FM 2(.0016) + .2(.0001 2(.0017)

-- 175

To estimate the second derivative, consider that p/am is
initially zero and rises to the average value listed above
in a space of one zone or so - being smaller than the above
value in the first zone and larger in the second so that the
average is the quantity listed. In the third zone the
derivative begins to decline reaching the average value at
the end of the third zone and falling off to zero by the end
of the fourth zone.

e p/ m - 06M2  2 mi
2M

?2p 0 -
m2  2 Alm

Averaging the absolute values, we et a crude estimate on the
maximum value of 2p/.M2:
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C)M2m 2 L21J

2L 47 x 104OM2

2! 2 6 m2

= (.47 X 104) (.0015)
4'

180

which is on the same order as the term 6p/6m which is being
calculated. Hence near a shock front, a mass mismatch can
introduce a serious error. The calculations listed are by
no means sound, they are merely an estimate of possible
error. At the present writing, an attempt is being made to
eliminate the difficulty, but results are not yet available.

Another question that frequently arises concerns
equations of state. As is pointed out in the text, the
confLusion arises because the Hugoniot is widely used as
an equation of state but it is really an equation of process.
However, as pointed out in section IV (PZ6), the Hugoniot is
a useful approximation.
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DERIVATIVE OF THlE JACOBIAN DETER1NINAIRT

Let

3(abc) 7a3i

6 ei-k eenn Tie Tim Tkm

where Tie x and the GiJky are the familiar alternating

symbols of tensor analysis (see note at end).

j = 1 Tie,TT - r ejk eemn TT m Tkn

+ 1L Giik eemn ....J. Tie Tkn

1 Tkn
+~ 77 61 emn T ie Tmk ~rs ej

- Eiik6emn 5ir 3es Tim Tkn

+ eijkG emn 8 Jr 8 sT ie T k

+ei;Jk Ge mn 5kr ans Tie T j]

[c rjk Csmn T m Tkn + irk 6esn Tie Tkn

+ Eijr 9-ems Tie T 3jj

[c 6 rjk '6smn Tj Tk + rk(sen Tie Tkn

+6 Ea r esem T ie Tijm
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Renumbering the dummy indices of summation we obtain:

E = [ rpv Csap Tpa T v + Crpy Csap Tpa Tvp

+ Crv esap Tpa Tvp]

-J 1 [5 e s Ti. a Tvp]

Multiply by TPs and sum on s:

' J _=.1 1 T T
TPs -NT 2' rpv sap pa TvP Ps

2. rpv Vvp

(epvr egvp)  V

=-- (8 5 -8 8 )j
2. vv rp vp vr

-14 (3 8rP -rp ) J
2.

' 8 rp

= J A-2



So that T, 5 r.L

or ___ - j -

L~3 i

But r is obviously -ar since --- a .
[Tr] 6x a Sx

S r 6xp

Hence, as claimed in the body of the report:

7T-"rs TrS- J

and
Trs-i =- S

r xr

NOTE: The summation convention is employed throughout so that
alj bjk is summed frcn J = 1 to 3. The Kronecker 8, bij, has
the value 1 if i = j and 0 otherwise. Obviously 8Fj ajk = aik

for any tensor a. Further jj = + 822 + 833 = 3. The

alternating symbol GIjk is zero if any 2 indices (i,j,k) are
the same. It is one if i j k is an even permutation of 1,2,3
and -1 for an odd permutation.
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I.
1

or

Vo-VI

Let

'Po = e2/

(V _ g) 2 *V/2 TPP 0  e 2

vo (1-v)

i~ e2 (1_V)

P V/0 (V-gl2

Now set Vo and p

g22

(p PO e2 P(1+4

p p oe 2 }(i+P)

[P e + 1 + 2 (1 -) ( p2 + 6 ( + + ..

g ga

SB-2
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